SAT Math Level 2 Practice Test 6

Special Angles

1. The exact value of $\tan \left(-60^{\circ}\right)$ is
A. $-\sqrt{3}$
B. -1
C. $-\frac{2}{\sqrt{3}}$
D. $-\frac{\sqrt{3}}{2}$
E. $-\frac{1}{\sqrt{3}}$
2. The exact value of $\cos \frac{3 \pi}{4}$
A. -1
B. $-\frac{\sqrt{3}}{2}$
C. $-\frac{\sqrt{2}}{2}$
D. $-\frac{1}{2}$
E. 0
3. $\operatorname{Csc} 540^{\circ}$ is
A. 0
B. $-\sqrt{3}$
C. $-\sqrt{2}$
D. -1
E. undefined

Graphs

1. In the figure, part of the graph of $y=\sin 2 x$ is shown. What are the coordinates of point P ?

A. $\left(\frac{\pi}{2}, 1\right)$
B. $(\pi, 1)$
C. $\left(\frac{\pi}{4}, 1\right)$
D. $\left(\frac{\pi}{2}, 2\right)$
E. $(\pi, 2)$
2. The figure below could be a portion of the graph whose equation is

A. $y-1=\sin x \cdot \cos x$
B. $y \sec x=1$
C. $2 y+1=\sin 2 x$
D. $2 y+1=\cos 2 x$
E. $1-2 y=\cos 2 x$
3. As θ increases from $\frac{\pi}{4}$ to $\frac{5 \pi}{4}$, the value of $4 \cos \frac{1}{2} \theta$
A. increases, and then decreases
B. decreases and then increases
C. decreases throughout
D. increases throughout
E. decreases, increases, and then decreases again
4. The function $f(x)=\sqrt{3} \cos x+\sin x$ has an amplitude of
A. 1.37
B. 1.73
C. 2
D. 2.73
E. 3.46

A. $\frac{1}{3}$
B. $\frac{2}{3}$
C. 2
D. 3
E. 6
5. If $0 \leq x \leq \frac{\pi}{2}$, what is the maximum value of the function $f(x)=\sin \frac{1}{3} x$?
A. 0
B. $\frac{1}{3}$
C. $\frac{1}{2}$
D. $\frac{\sqrt{3}}{2}$
E. 1
6. If the graph in the figure below has an equation of the form $y=\sin (M x+N)$, what is the value of N ?

A. $-\pi$
B. -1
C. $-\frac{1}{2}$
D. $\frac{\pi}{2}$
E. π

Identities, Equations, and Inequalities

1. If $\sin ^{x=\frac{2}{3}}$ and $\cos \quad x=-\frac{5}{9}$, find the value of $\sin 2 x$.
A. $-\frac{20}{27}$
B. $-\frac{10}{27}$
C. $\frac{10}{27}$
D. $\frac{20}{27}$
E. $\frac{4}{3}$
2. If $\tan A=\cot B$, then
A. $A=B$
B. $A=90^{\circ}+B$
C. $B=90^{\circ}+A$
D. $A+B=90^{\circ}$
E. $A+B=180^{\circ}$
3. If $\cos x=\frac{\sqrt{3}}{2}$, find $\cos 2 x$.
A. -0.87
B. -0.25
C. 0
D. 0.5
E. 0.75
4. If $\sin 37^{\circ}=z$, express $\sin 74^{\circ}$ in terms of z.
A. $2 z \sqrt{1-z^{2}}$
B. $2 z^{2}+1$
C. $2 z$
D. $2 z^{2}-1$
E. $\frac{z}{\sqrt{1-z^{2}}}$
5. If $\sin x=-0.6427$, what is $\csc x$?
A. -1.64
B. -1.56
C. 0.64
D. 1.56
E. 1.7
6. For what value(s) of $x, 0<x<\frac{\pi}{2}$, is $\sin x<\cos x$?
A. $x<0.79$
B. $x<0.52$
C. $0.52<x<0.79$
D. $x>0.52$
E. $x>0.79$
7. What is the range of the function $f(x)=5-6 \sin (\pi x+1)$?
A. $[-6,6]$
B. $[-5,5]$
C. $[-1,1]$
D. $[-1,11]$
E. [-11, 1]

Inverse Trig Functions

1. Find the number of degrees in $\sin ^{-1} \frac{\sqrt{2}}{2}$.
A. -45
B. -22.5
C. 0
D. 22.5
E. 45
2. Find the number of radians in $\cos ^{-1}(-0.5624)$.
A. -0.97
B. 0.97
C. 1.77
D. 2.16
E. none of these
3. Evaluate $\tan ^{-1}\left(\tan 128^{\circ}\right)$.
A. -128°
B. -52°
C. 52°
D. 128°
E. none of these
4. Find the number of radians in $\cot ^{-1}(-5.2418)$.
A. -10.8
B. -5.3
C. -1.38
D. -0.19
E. none of these
5. Which of the following is (are) true?
I. $\sin ^{-1} 1+\sin ^{-1}(-1)=0$
II. $\cos ^{-1} 1+\cos ^{-1}(-1)=0$
III. $\cos ^{-1} x=\cos ^{-1}(-x)$ for all x in the domain of $\cos ^{-1}$
A. only I
B. only II
C. only III
D. only I and II
E. only II and III
6. Which of the following is a solution of $\cos 3 x=\frac{1}{2}$?
A. 60°
B. $\frac{5 \pi}{3}$
C. $\cos ^{-1}\left(\frac{1}{6}\right)$
D. $\cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)$
E. $\frac{1}{3} \cos ^{-1}\left(\frac{1}{2}\right)$

Triangles

1. In $\triangle A B C, \angle A=30^{\circ}, b=8$, and $a=4 \sqrt{2}$. Angle C could equal
A. 45°
B. 135°
C. 60°
D. 15°
E. 90°
2. In $\triangle A B C, \angle A=30^{\circ}, a=6$, and $c=8$. Which of the following must be true?
A. $0^{\circ}<\angle C<90^{\circ}$
B. $90^{\circ}<\angle C<180^{\circ}$
C. $45^{\circ}<\angle C<135^{\circ}$
D. $0^{\circ}<\angle C<45^{\circ}$ or $90^{\circ}<\angle C<135^{\circ}$
E. $0^{\circ}<\angle C<45^{\circ}$ or $135^{\circ}<\angle C<180^{\circ}$
3. The angles of a triangle are in a ratio of $8: 3: 1$. The ratio of the longest side of the triangle to the next longest side is
A. $\sqrt{6}: 2$
B. $8: 03$
C. $\sqrt{3}: 1$
D. 8:05
E. $2 \sqrt{2}: \sqrt{3}$
4. The sides of a triangle are in a ratio of $4: 5: 6$. The smallest angle is
A. 82°
B. 69°
C. 56°
D. 41°
E. 27°
5. Find the length of the longer diagonal of a parallelogram if the sides are 6 inches and 8 inches and the smaller angle is 60°.
A. 8
B. 11
C. 12
D. 7
E. 17
6. What are all values of side a in the figure below such that two triangles can be constructed?

A. $a>4 \sqrt{3}$
B. $a>8$
C. $a=4 \sqrt{3}$
D. $4 \sqrt{3}<a<8$
E. $8<a<8 \sqrt{3}$
7. In $\triangle A B C, \angle B=30^{\circ}, \angle C=105^{\circ}$, and $b=10$. The length of side a equals

A. 7
B. 9
C. 10
D. 14
E. 17
8. The area of $\triangle A B C=24 \sqrt{3}$, side $a=6$, and side $b=16$. The value of $\angle C$ is
A. 30°
B. 30° or 150°
C. 60°
D. 60° or 120°
E. none of the above
9. The area of $\triangle A B C=12 \sqrt{3}$, side $a=6$, and side $b=8$. Side $c=$
A. $2 \sqrt{37}$
B. $2 \sqrt{13}$
C. $2 \sqrt{37}$ or $2 \sqrt{13}$
D. 10
E. 10 or 12
10. Given the following data, which can form two triangles?
I. $\angle C=30^{\circ}, c=8, b=12$
II. $\angle B=45^{\circ}, a=12 \sqrt{2}, b=15 \sqrt{2}$
III. $\angle C=60^{\circ}, b=12, c=5 \sqrt{3}$
A. only I
B. only II
C. only III
D. only I and II
E. only I and III

Exponential and Logarithmic Functions

1. If $x^{a} \cdot\left(x^{a+1}\right)^{a \cdot} \cdot\left(x^{a}\right)^{1-a}=x^{k}$, then $k=$
A. $2 a+1$
B. $a+a^{2}$
C. $3 a$
D. $3 a+1$
E. $a^{3}+a$
2. If $\log _{8} 3=x \cdot \log _{2} 3$, then $x=$
A. $\frac{1}{3}$
B. 3
C. 4
D. $\log _{4} 3$
E. $\log _{8} 9$
3. If $\log _{10} m=\frac{1}{2}$, then $\log _{10} 10 m^{2}=$
A. 2
B. 2.5
C. 3
D. 10.25
E. 100
4. If $\log _{b} 5=a, \log _{b} 2.5=c$, and $5^{x}=2.5$, then $x=$
A. ac
B. $\frac{c}{a}$
C. $a+c$
D. $c-a$
E. The value of x cannot be determined from the information given.
5. If $f(x)=\log _{2} x$, then $f\left(\frac{2}{x}\right)+f(x)=$
A. ${ }^{\log \left(\frac{2}{x}\right)+\log _{2} x}$
B. 1
C. $\log _{2}\left(\frac{2+x^{2}}{x}\right)$
D. ${ }^{\log _{2}\left(\frac{2}{x}\right) \cdot \log _{2} x}$
E. 0
6. If $\operatorname{In}(x y)<0$, which of the following must be true?
A. $x y<0$
B. $x y<1$
C. $x y>1$
D. $x y>0$
E. none of the above
7. $\log _{2} m=\sqrt{7}$ and $\log _{7} n=\sqrt{2}, m n=$
A. 1
B. 2
C. 96
D. 98
E. 103
8. $\log _{7} 5=$
A. 1.2
B. 1.1
C. 0.9
D. 0.8
E. -0.7
9. $(\sqrt[3]{2})(\sqrt[5]{4})(\sqrt[9]{8})=$
A. 1.9
B. 2
C. 2.1
D. 2.3
E. 2.5
10. If $\$ 300$ is invested at 3%, compounded continuously, how long (to the nearest year) will it take for the money to double? (If P is the amount invested, the formula for the amount, A, that is available after t years is $A=P e^{0.03 t}$.)
A. 26
B. 25
C. 24
D. 23
E. 22

Rational Functions and Limits

1. To be continuous at $x=1$, the value of $\frac{x^{4}-1}{x^{3}-1}$ must be defined to be equal to
A. -1
B. 0
C. 1
D. $\frac{4}{3}$
E. 4
2. If $f(x)=\left\{\begin{array}{cc}\frac{3 x^{2}+2 x}{x} & \text { when } x \neq 0 \\ k & \text { when } x=0\end{array}\right\}$, what must the value of k be equal to in order for $f(x)$ to be a continuous function?
A. $-\frac{3}{2}$
B. $-\frac{2}{3}$
C. 0
D. 2
E. No value of k can make $f(x)$ a continuous function.
3. $\lim _{x \rightarrow 2}\left(\frac{x^{3}-8}{x^{4}-16}\right)=$
A. 0
B. $\frac{3}{8}$
C. $\frac{1}{2}$
D. $\frac{4}{7}$
E. This expression is undefined.
4. $\lim _{x \rightarrow \infty}\left(\frac{5 x^{2}-2}{3 x^{2}+8}\right)=$
A. $-\frac{1}{4}$
B. 0
C. $\frac{3}{11}$
D. $\frac{5}{3}$
E. ∞
5. Which of the following is the equation of an asymptote of $y=\frac{3 x^{2}-2 x-1}{9 x^{2}-1}$?
A. $x=-\frac{1}{3}$
B. $x=1$
C. $y=-\frac{1}{3}$
D. $y=\frac{1}{3}$
E. $y=1$
